- Regangan ruang pada senyawa siklik (sikloalkana)
Sikloalkana adalah golongan senyawa hidrokarbon jenuh yang rantai atom-atom karbon-karbonnya tertutup (membentuk cincin), sehingga termasuk hidrokarbon siklik. Karena sifat-sifat sikloalkana sangat mirip dengan golongan alkana (hidrokarbon alifatik), maka sikloalkana dikategorikan sebagai hidrokarbon alisiklik. Rumus umum sikloalkana CnH2n.
Dengan pasangan-pasangan elektron yang saling berdekatan, terjadi tolak menolak antara pasangan-pasangan elektron yang menghubungkan atom-atom karbon. Ini membuat ikatan-ikatan lebih mudah terputus.
Dalam pemberian nama sikloalkana selalu digunakan awalan siklo-. Sebagai contoh, sikloalkana yang mengandung 3 atom C dinamakan siklopropana, yang mengandung 4 atom C dinamakan siklobutana, dan seterusnya. Pada sikloalkana yang mengandung substituen, pemberian namanya adalah dengan terlebih dahulu menyebut nama substituen tersebut, diikuti dengan nama sikloalkananya. Sebagai contoh, siklopentana yang mengandung sebuah substituen metil diberi nama metilsiklopentana. Bila substituennya lebih dari sebuah diperlukan penomoran dan dengan memperhatikan urutan alfabetik huruf pertama masing-masing substituen. Sebagai contoh, 1,4-dimetilsikloheksana, 4-etil-1-metilsikloheksana, dan 1-tersierbutil-4-metilsikloheksana.
Kestabilan (ketidakreaktifan) sikloalkana pada mulanya dijelaskan dengan “teori regangan Baeyer” (Baeyer’s strain theory). Menurut teori ini, senyawa siklik seperti halnya sikloalkana membentuk cincin datar. Bila sudut-sudut ikatan dalam senyawa siklik menyimpang dari sudut ikatan tetrahedral (109,50) maka molekulnya mengalami regangan. Makin besar penyimpangannya terhadap sudut ikatan tetrahedral, molekulnya makin regang, dan berakibat molekul tersebut makin reaktif.
Sikoalkana memiliki kereaktifan yang sangat mirip dengan alkana, kecuali untuk sikloalkana yang sangat kecil – khususnya siklopropana. Siklopropana jauh lebih reaktif dibanding yang mungkin kita kira. Alasannya karena sudut-sudut ikatan dalam cincin. Normalnya, apabila karbon membentuk empat ikatan tunggal, maka sudut-sudut ikatannya adalah sekitar 109,5°. Pada siklopropana sudut ini sebesar 60°
Jika ditinjau dari segi regangan cincinnya, yang dihitung berdasarkan harga kalor pembakaran, terbukti bahwa harga regangan total cincin yang terbesar adalah pada siklopropana, disusul dengan siklobutana, dan siklopentana. Pada sikloheksana harganya = 0, yang sama dengan harga senyawa rantai terbuka. Besarnya harga regangan pada siklopropana tersebut disebabkan oleh adanya regangan sudut dan regangan sterik. Makin besar penyimpangannya dari sudut tetrahedral, makin besar pula regangan sudutnya.
Dalam usaha mengurangi regangan agar diperoleh kestabilan, molekul sikloalkana mengalami konformasi. Pada siklopentana konformasinya mengakibatkan keempat atom karbonnya berada dalam satu bidang dan atom karbon kelima membentuk ikatan bengkok. Pada sikloheksana konformasinya mengakibatkan semua ikatan C-C-C mempunyai sudut 109,50. Salah satu dari konformasi pada sikloheksana dinamakan konformasi kursi, yang ditandai oleh adanya dua macam orientasi ikatan C-H, yaitu enam buah ikatan C-H aksial dan enam buah ikatan C-H ekuatorial. Dikenal pula adanya konformasi perahu pada sikloheksana, yang kestabilannya lebih rendah daripada konformasi kursi. Jika satu atom H pada sikloheksana diganti oleh gugus –CH3 atau gugus lain, maka gugus –CH3/ gugus lain tersebut dapat berposisi aksial/ ekuatorial. Dalam hal ini konformasi yang lebih stabil adalah konformasi dengan gugus –CH3 berposisi ekuatorial.
Bila sikloalkana mengikat substituen pada dua atau lebih atom karbon, maka terjadi isomer cis-trans. Salah satu contohnya adalah pada 1,2-dimetilsiklopentana. Dalam penggambaran strukturnya, cincin siklopentana digambarkan sebagai segilima datar, dengan ketentuan bila kedua substituennya terletak pada sisi yang sama dari bidang cincin dinamakan isomer cis, sedangkan bila berseberangan dengan bidang cincin dinamakan isomer trans. Pada sikloheksana juga dijumpai isomer-isomer cis-tans, yang bila digambarkan dengan konformasi kursi, yang masing-masing substituen dapat berposisi aksial atau ekuatorial. Sifat-sifat fisika dan kimia sikloalkana hampir sama dengan alkana, yaitu nonpolar, titik didih dan titik leburnya sebanding dengan berat molekulnya, dan inert (lambat bereaksi dengan senyawa lain). Reaksi sikloalkana dengan oksigen dapat menghasilkan CO2 dan H2O, sedangkan dengan halogen terhadi reaksi substitusi atom H oleh atom halogen. Khusus untuk siklopropana dan siklobutana, dengan kondisi reaksi khusus, dapat mengalami pemutusan cincin.
Di alam sikloalkana terkandung dalam minyak bumi bersama-sama dengan alkana. Kandungan sikloalkana dalam minyak bumi berkaitan erat dengan tempat mendapatkannya minyak bumi tersebut. Sebagai contoh, minyak bumi yang berasal dari California banyak mengandung sikloalkana. Dalam industri minyak bumi, sikloalkana dikenal dengan nama naftalena.
Untuk membuat sikloalkana, dapat digunakan bahan dasar senyawa alifatik, atau senyawa aromatik. Sebagai contoh, siklopropana dibuat dengan reaksi Freud, yaitu dengan mereaksikan 1,3-dibromopropana dengan logam seng. Untuk membuat sikloheksana dapat ditempuh dengan cara hidrogenasi benzena dengan katalis Ni, pada suhu dan tekanan tinggi.
Dalam usaha mengurangi regangan agar diperoleh kestabilan, molekul sikloalkana mengalami konformasi. Pada siklopentana konformasinya mengakibatkan keempat atom karbonnya berada dalam satu bidang dan atom karbon kelima membentuk ikatan bengkok. Pada sikloheksana konformasinya mengakibatkan semua ikatan C-C-C mempunyai sudut 109,50. Salah satu dari konformasi pada sikloheksana dinamakan konformasi kursi, yang ditandai oleh adanya dua macam orientasi ikatan C-H, yaitu enam buah ikatan C-H aksial dan enam buah ikatan C-H ekuatorial. Dikenal pula adanya konformasi perahu pada sikloheksana, yang kestabilannya lebih rendah daripada konformasi kursi. Jika satu atom H pada sikloheksana diganti oleh gugus –CH3 atau gugus lain, maka gugus –CH3/ gugus lain tersebut dapat berposisi aksial/ ekuatorial. Dalam hal ini konformasi yang lebih stabil adalah konformasi dengan gugus –CH3 berposisi ekuatorial.
Bila sikloalkana mengikat substituen pada dua atau lebih atom karbon, maka terjadi isomer cis-trans. Salah satu contohnya adalah pada 1,2-dimetilsiklopentana. Dalam penggambaran strukturnya, cincin siklopentana digambarkan sebagai segilima datar, dengan ketentuan bila kedua substituennya terletak pada sisi yang sama dari bidang cincin dinamakan isomer cis, sedangkan bila berseberangan dengan bidang cincin dinamakan isomer trans. Pada sikloheksana juga dijumpai isomer-isomer cis-tans, yang bila digambarkan dengan konformasi kursi, yang masing-masing substituen dapat berposisi aksial atau ekuatorial. Sifat-sifat fisika dan kimia sikloalkana hampir sama dengan alkana, yaitu nonpolar, titik didih dan titik leburnya sebanding dengan berat molekulnya, dan inert (lambat bereaksi dengan senyawa lain). Reaksi sikloalkana dengan oksigen dapat menghasilkan CO2 dan H2O, sedangkan dengan halogen terhadi reaksi substitusi atom H oleh atom halogen. Khusus untuk siklopropana dan siklobutana, dengan kondisi reaksi khusus, dapat mengalami pemutusan cincin.
Di alam sikloalkana terkandung dalam minyak bumi bersama-sama dengan alkana. Kandungan sikloalkana dalam minyak bumi berkaitan erat dengan tempat mendapatkannya minyak bumi tersebut. Sebagai contoh, minyak bumi yang berasal dari California banyak mengandung sikloalkana. Dalam industri minyak bumi, sikloalkana dikenal dengan nama naftalena.
Untuk membuat sikloalkana, dapat digunakan bahan dasar senyawa alifatik, atau senyawa aromatik. Sebagai contoh, siklopropana dibuat dengan reaksi Freud, yaitu dengan mereaksikan 1,3-dibromopropana dengan logam seng. Untuk membuat sikloheksana dapat ditempuh dengan cara hidrogenasi benzena dengan katalis Ni, pada suhu dan tekanan tinggi.
- Regangan Ruang pada senyawa asiklik
Pengaturan posisi atom yang
bervariasi/berbeda-beda yang diakibatkan oleh rotasi ini disebut konformasi. Konformasi
adalah bentuk molekul dan bagaimana bentuk ini dapat berubah. Dalam senyawa
rantai terbuka, gugus-gugus yang terikat oleh ikatan sigma dapat berotasi
mengelilingi ikatan itu. Oleh karena itu atom-atom dalam suatu molekul rantai
terbuka dapat memiliki tak terhingga banyak posisi di dalam ruang relatif satu
terhadap yang lain. Memang etana merupakan sebuah molekul kecil, tetapi etana
dapat memiliki penataan dalam ruang secara berlain-lain.
contohnya adalah pada 3-kloro-1-propanol
Sumber:
terimakasih atas materinya yang sangat lengkap dan sangat membantu saya dalam memahaminya akan tetapi mohon dijelaskan apakah senyawa non siklik juga bisa mengalami regangan ruang ?
BalasHapusTerima Kasih atas pertanyaannya,senyawa non siklik atom-atomnya memiliki peluang tak terhingga jumlah penataan/posisinya di dalam suatu ruang untuk mencapai kestabilan dengan menyamai sudut ikatan tetrahedral.Oleh karena itu atom-atom dalam suatu senyawa rantai terbuka dapat memiliki posisi yang tak terhingga banyaknya di dalam ruang relatif satu terhadap yang lain. contohnya adalah 1,3 butadiena,secara struktur membentuk formasi cis 1,3 butadiena. Dimana atom H pada nomor 1 dan 3 terlalu dekat dan mengalami gaya tolak sterik. Karena gaya tolakan tersebut gugus H akan memposisikan agar sedikit mengalami gaya tolak sterik yaitu dengan memutar posisi. Pada ikatan nomor 2 mempunyai ikatan tunggal sehingga dapat diputar, sehingga struktur akan berubah menjadi trans 1,3 butadiena.jadi artinya bukan hanya senyawa siklik yang mengalami regangan ruang namun senyawa non siklik pun dapat mengalami regangan ruang untuk mencapai kestabilan dengan menyamai sudut tetrahedral,sekian saya harap jawaban ini mampu menjawab pertanyaan saudari,terima kasih.
HapusTerimakasih materinya, apakah regangan ruang terjadi pada molekul oktahedral dab bagaimana sifat molekulnya ya? Trmksh
BalasHapusbaiklah,terima kasih atas pertanyaannya,saya akan mencoba menjawab,menurut saya regangan ruang dapat terjadi pada molekul oktahedral yang mana akan terjadi bila molekul oktahedral tersebut pada keadaannya tidak membentuk sudut ikatan 90 derajat melainkan lebih kecil dari 90 derajat, yang mana seharusnya apabila molekul tersebut oktahedral maka keadaan stabilnya dalam sudut ikatan 90 derajat,untuk itu,dalam mencapai kestabilannya maka molekul oktahedral tersebut tentu melakukan regangan ruang untuk membentuk sudut ikatan 90 derajat,dan hal itu tentu akan mempengaruhi sifat molekulnya karena adanya perubahan (regangan) pada molekul dimana akan sedikit berbeda sifat molekul oktahedral tersebut pada sebelum mengalami regangan dengan setelah mengalami regangan,yang tentunya setelah mengalami regangan molekul oktahedral tersebut lebih stabil karena tekah membentuk sudut ikatan 90 derajat yaitu sudut ikatan yang semestinya.
HapusTerimakasih materinya sangat bermanfaat..
BalasHapusiya,sama-sama
HapusTerimakasih, materinya sangat bermanfaat.
BalasHapusiya sama-sama,terima kasih telah berkunjung
Hapus